Effect of Atmospheric CO2 Enrichment on Root Growth and Carbohydrate Allocation of Phaseolus spp.

نویسندگان

  • Salsman
  • Jordan
  • Smith
  • Neuman
چکیده

A glasshouse experiment was conducted with plants of Phaseolus grown in liquid culture. Root growth parameters (biomass, diameter, length, growth rate, zone of cell division), root rheological components (wall extensibility, water potential yield threshold, water potential), shoot growth, carbon allocation, and abscisic acid (ABA) concentration were measured in Phaseolus acutifolius A. Gray at ambient (550 µmol mol-1) and elevated (700 µmol mol-1) atmospheric CO2 concentrations. For contrast, measurements of above- and belowground growth were conducted on Phaseolus vulgaris L. in the same treatments. Under nonlimiting conditions of water and nutrients, elevated CO2 increased root and shoot growth of P. acutifolius but not P. vulgaris. While root mass was increased by nearly 60% in P. acutifolius, there was no effect of atmospheric CO2 on any of the rheological components measured. In contrast, starch and ABA accumulated in roots of P. acutifolius. The concentration of starch in roots of P. acutifolius increased by 10-fold, while root concentrations of ABA doubled. From the data it is concluded that CO2 enrichment is favorable for root growth in some species in that more carbon is allocated to belowground growth. In addition, ABA may play a role in growth responses and/or allocation of photosynthates at elevated CO2 in P. acutifolius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acuti...

متن کامل

Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L

Increased root exudation and a related stimulation of rhizosphere-microbial growth have been hypothesised as possible explanations for a lower nitrogen(N-) nutritional status of plants grown under elevated atmospheric CO2 concentrations, due to enhanced plantmicrobial N competition in the rhizosphere. Leguminous plants may be able to counterbalance the enhanced N requirement by increased symbio...

متن کامل

Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.

Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, morta...

متن کامل

بررسی اثر غلظت دی‌اکسید کربن و میزان آبیاری بر تبخیر- تعرق و عملکرد گیاه لوبیا قرمز

Increasing atmospheric CO2 concentration affects plant activities directly. In order to investigate the effect of CO2 concentration, an experiment was conducted at Research Greenhouse of College of Agriculture, Shiraz University, Shiraz, Iran. In this research, the effects of increasing CO2 concentration from 350 to 750 mg/L were studied on growth and yield of red bean (Phaseolus vulgaris, cv. ...

متن کامل

Soil CO2 concentration does not affect growth or root respiration in bean or citrus

Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported. Here we examine the effects of both shortand long-term exposure to soil CO2 on the root respiration of intact plants and on plant growth for bean (Phaseolus vulgaris L.) and citrus (Citrus volkainenana Tan. & Pasq.). For r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of plant sciences

دوره 160 6  شماره 

صفحات  -

تاریخ انتشار 1999